Eigenvalues & Eigenvectors

Definition

Let A be an $n \times n$ matrix. The constant λ is an **eigenvalue** of A if there is a **nonzero** vector \vec{v} (eigenvector) such that

$$A\vec{v} = \lambda\vec{v} \tag{5}$$

Q1: Is $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ an eigenvector of $\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$? If yes, find the corresponding eigenvalue.

For the answer to be yes, there must be a constant λ such that

$$\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 4 \end{pmatrix}.$$
$$\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} -3(1) + 1(4) \\ -3(1) + 8(4) \end{pmatrix} = \begin{pmatrix} 1 \\ 29 \end{pmatrix} \neq \lambda \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
Answer: No

Q2: Is $\lambda = 8$ an eigenvalue of $\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$? Justify your answer.

For the answer to be yes, there must be a nonzero vector $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ such that

$$\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 8 \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}, \text{ or } \begin{array}{c} 7v_1 + 3v_2 = 8v_1 \\ 3v_1 - v_2 = 8v_2 \end{bmatrix}$$

which is equivalent to finding nontrivial solutions to the homogeneous system

$$v_1 - 3v_2 = 0$$

 $3v_1 - 9v_2 = 0$, whose solutions are $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 3v_2 \\ v_2 \end{pmatrix} = v_2 \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Therefore, $\lambda = 8$ is an eigenvalue of the matrix $\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$.

Check:
$$\begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix} \begin{pmatrix} 3v_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 24v_2 \\ 8v_2 \end{pmatrix} = 8 \begin{pmatrix} 3v_2 \\ v_2 \end{pmatrix}$$

Q3: Is
$$\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$? If yes, find the corresponding eigenvalue.

For the answer to be yes, there must be a constant λ such that

$$\begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

$$\begin{bmatrix} 3 & 6 & 7 \\ -2 \\ 1 \end{pmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \begin{pmatrix} 3(1) + 6(-2) + 7(1) \\ 3(1) + 3(-2) + 7(1) \\ 5(1) + 6(-2) + 5(1) \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ -2 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

Answer: Yes, and the corresponding eigenvalue is $\lambda = -2$.

How to find eigenvalues:

Let *A* be an $n \times n$ matrix. Starting with $A\vec{v} = \lambda\vec{v}$, $A\vec{v} - \lambda\vec{v} = \vec{0}$, $(A - \lambda I_n)\vec{v} = \vec{0}$. To find the eigenvectors of *A*, the homogeneous system $(A - \lambda I_n)\vec{v} = \vec{0}$ must have nontrivial solutions, and therefore,

$$\det\left(A - \lambda I_n\right) = 0 \tag{6}$$

Characteristic Polynomial

The characteristic polynomial of A, $P(\lambda)$, is a polynomial of degree n in the variable λ given by

$$P(\lambda) = \det\left(A - \lambda I_n\right)$$

Therefore, the eigenvalues of *A* are roots of the characteristic polynomial.

Example 1

Find the characteristic polynomial and eigenvalues of the matrix

$$A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}.$$

$$\det (A - \lambda I_2) = \det \begin{bmatrix} 7 - \lambda & 3 \\ 3 & -1 - \lambda \end{bmatrix} = (7 - \lambda) \cdot (-1 - \lambda) - 9 = -7 - 7\lambda + \lambda + \lambda^2 - 9$$

$$P(\lambda) = \lambda^2 - 6\lambda - 16$$

$$\lambda^2 - 6\lambda - 16 = (\lambda - 8) \cdot (\lambda + 2) = 0, \quad \lambda_1 = 8, \quad \lambda_2 = -2$$

Example 2

Find the characteristic polynomial and eigenvalues of the matrix

$$A = \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}.$$

$$P(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} 5 - \lambda & 4 & 2 \\ 4 & 5 - \lambda & 2 \\ 2 & 2 & 2 - \lambda \end{bmatrix} = (5 - \lambda) \cdot C_{11} + 4 \cdot C_{12} + 2 \cdot C_{13}$$

$$= (5 - \lambda) \cdot \det\begin{bmatrix} 5 - \lambda & 2 \\ 2 & 2 - \lambda \end{bmatrix} - 4 \cdot \det\begin{bmatrix} 4 & 2 \\ 2 & 2 - \lambda \end{bmatrix} + 2 \cdot \det\begin{bmatrix} 4 & 5 - \lambda \\ 2 & 2 \end{bmatrix}$$

$$= (5 - \lambda) \cdot [(5 - \lambda)(2 - \lambda) - 4] - 4 \cdot [4(2 - \lambda) - 4]] + 2 \cdot [8 - 2(5 - \lambda)]$$

$$= -\lambda^3 + 12\lambda^2 - 21\lambda + 10 = (1-\lambda)^2 \cdot (10-\lambda)$$

Setting $P(\lambda) = 0$ we get $\lambda_1 = 10$ and $\lambda_2 = \lambda_3 = 1$.

Homework

1. Find the characteristic polynomial and eigenvalues of

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

2. Find the characteristic polynomial and all eigenvalues of the matrix

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}.$$

$$P(\lambda) = \det \left(C - \lambda I_3 \right) = \det \begin{bmatrix} 1 - \lambda & 2 & 3 \\ 1 & 2 - \lambda & 3 \\ 1 & 2 & 3 - \lambda \end{bmatrix} = \cdots$$

How to find eigenvectors:

Recall

To find the eigenvectors of A, we must find nontrivial solutions for the homogeneous system

$$(A - \lambda I_n)\vec{v} = \vec{0}$$
⁽⁷⁾

after replacing λ by the eigenvalues of A, one at a time.

Example 1

Find the eigenvectors of the matrix

$$A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}.$$

From an earlier problem we know that $\lambda_1 = 8$ and $\lambda_2 = -2$.

For
$$\lambda_1 = 8$$
, $(A - 8I_2) = \begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix}$, and by solving
 $\begin{bmatrix} -1 & 3 \\ 3 & -9 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we have
 $-v_1 + 3v_2 = 0$, $v_1 = 3v_2$ and $\vec{v}^{(1)} = \begin{pmatrix} 3v_2 \\ v_2 \end{pmatrix}$.
For $\lambda_2 = -2$, $(A + 2I_2) = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$, and by solving
 $\begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we have
 $3v_1 + v_2 = 0$, $v_1 = -\frac{v_2}{3}$ and $\vec{v}^{(2)} = \begin{pmatrix} -\frac{v_2}{3} \\ v_2 \end{pmatrix}$.

Example 2

Find the eigenvectors of the matrix

$$A = \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}.$$

From an earlier problem we know that $\lambda_1 = 10$ and $\lambda_2 = \lambda_3 = 1$.

For
$$\lambda_1 = 10$$
, $(A - 10I_3) = \begin{bmatrix} -5 & 4 & 2 \\ 4 & -5 & 2 \\ 2 & 2 & -8 \end{bmatrix}$, and by solving

$$\begin{bmatrix} -5 & 4 & 2 \\ 4 & -5 & 2 \\ 2 & 2 & -8 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, we have

$$\begin{bmatrix} -5 & 4 & 2 & | & 0 \\ 4 & -5 & 2 & | & 0 \\ 2 & 2 & -8 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -1 & 4 & | & 0 \\ 4 & -5 & 2 & | & 0 \\ 2 & 2 & -8 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -4 & | & 0 \\ 0 & -9 & 18 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & -4 & | & 0 \\ 0 & -9 & 18 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
Solutions: $\vec{v}^{(0)} = \begin{pmatrix} 2v_3 \\ 2v_3 \\ v_3 \end{pmatrix}$

For
$$\lambda_{1,2} = 1$$
, $(A - 1I_3) = \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix}$, and by solving

$$\begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ we get}$$

$$\begin{bmatrix} 4 & 4 & 2 & | & 0 \\ 4 & 4 & 2 & | & 0 \\ 2 & 2 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \frac{1}{2} & | & 0 \\ 4 & 4 & 2 & | & 0 \\ 2 & 2 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \frac{1}{2} & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Solutions:
$$\begin{pmatrix} -v_2 - \frac{1}{2}v_3 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} -v_2 \\ v_2 \\ 0 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2}v_3 \\ 0 \\ v_3 \end{pmatrix}$$

Therefore,

$$\vec{v}^{(2)} = \begin{pmatrix} -v_2 \\ v_2 \\ 0 \end{pmatrix}$$
 and $\vec{v}^{(3)} = \begin{pmatrix} -\frac{1}{2}v_3 \\ 0 \\ v_3 \end{pmatrix}$

Theorem 5

If λ is an eigenvalue of an $n \times n$ invertible matrix A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

Proof:

If λ is an eigenvalue of an $n \times n$ invertible matrix A, then there is a vector \vec{v} such that $A \vec{v} = \lambda \vec{v}$. Since A is invertible, we apply A^{-1} on both sides. Therefore,

$$A^{-1}A \, \vec{v} = A^{-1}\lambda \, \vec{v}$$
 or $\vec{v} = \lambda \, A^{-1} \, \vec{v}$ or $A^{-1} \, \vec{v} = \frac{1}{\lambda} \, \vec{v}$

Theorem 6

If $\lambda = 0$ is an eigenvalue of an $n \times n$ matrix A, then det A = 0.

Proof:

If λ is an eigenvalue of an $n \times n$ invertible matrix A, then det $A - \lambda I_n = 0$. If you let $\lambda = 0$ then det A = 0.

Theorem 7

If λ is an eigenvalue of an $n \times n$ matrix A, then λ^2 is an eigenvalue of A^2 .

Proof:

If λ is an eigenvalue of an $n \times n$ invertible matrix A, then there is a vector \vec{v} such that $A \vec{v} = \lambda \vec{v}$. If we multiply both sides by A we get,

$$AA \vec{v} = A\lambda \vec{v}$$
 or $A^2 \vec{v} = \lambda A \vec{v}$ or $A^2 \vec{v} = \lambda \cdot \lambda \vec{v}$ or $A^2 \vec{v} = \lambda^2 \vec{v}$

Homework

1. Find all eigenvectors of *A* and *B*.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

2. Find all eigenvectors of the matrix

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}.$$